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Relaxation to equilibrium in few-particle adiabatic piston systems
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A Hamiltonian system with few particles and a heavy adiabatic piston is studied. With ensemble averages
based on proper classification of slow and fast variables, a nonequilibrium state is defined and the relaxation
from nonequilibrium to equilibrium is investigated. Coherent oscillation, dissipative oscillation damping, and
anti-intuition energy transfer of the adiabatic piston are observed by numerical simulations. Noise-driven
thermodynamic equations of slow variables are derived, based on the assumption of local equilibrium and the
fluctuation-dissipation theorem, to understand and quantitatively reproduce all the above few-body nonequi-
librium relaxation features.
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I. INTRODUCTION From a mathematical point of view, most of few-body

The problem of statistical behavior of few-body systemsMechanical systems are nonintegrable, they may be mixing,
has attracted great attention in recent decades. The crucigi@otic or may be ergodic in energy surface. It is usually
significance of this topic is that the investigation can build upimpossible to analytically solve the trajectories of such sys-
a bridge from mechanics to statistical physits9] It turns ~ tems. However, it is possible to solve some of these prob-
to be clear that a nonlinear mechanical system with few parlems in statistical leveloften with reasonable approxima-
ticles may show ergodicity in energy surface, and variougions). Analytical results in this direction for any new
thermodynamic quantities can be defined accordingly, andontrivial systems will be of much help in understanding
the thermodynamic second law can be applied to such a syphysical processes.
tem, looking very simple. In this direction, a problem ex- In this paper, we will study few-body AP systems, pro-
tremely important in nonequilibrium statistical physics, thepose a suitable average method to manifest the relaxation
relaxation process from nonequilibrium to equilibrium states processes from nonequilibrium to equilibrium states, and
has not beer(to our knowledgg considered and even the construct a stochastically forced thermodynamic equation to
definition of nonequilibrium states for few body mechanical satisfactorily describe the relaxation processes.
systems has not yet been available.

In statistical physics, there are a number of interesting
problems concerning nonequilibrium relaxation processes.

The evolution of systems with adiabatic pistot&P) is Let us start with a few-body AP model, which is supposed
among the most conceptionally amazing of8-14. The 1t have dynamic structure as simple as possible on one hand
AP problem considers the relaxation to the equilibrium statenq o contain the essential characteristics of the AP problem
with a piston having large mass and forbidding heat flowgp, the other hand. We consider a piston of mssvhich is
between its two sides. In this process one may observe ggjapatic against heat flow between its two sides. Each side
strange phenomenon: as the average piston position Movggthe piston containdl particles of mass with m< M. The

from right (left) to left (right), one finds energy transport particles and the piston move in one-dimensional space of
from left (right) to right (left), and this is not intuitively lengthL, and thus, no penetration through any particle, pis-
accepted. It has been made clear that this seemingly anfion, and boundary is allowed. Free motions are assumed
intuitive phenomenon is caused by the fluctuation of the pisythout collision, and all the particle-particle, particle-piston,

ton motion[11], which is often ignored in studying relax- and particle-boundary collisions are hard and elastic. There-
ation processes of thermodynamic systems. So far, the Afdre, the Hamiltonian of the system reads

problem has been investigated uniquely for thermodynamic
systems having huge numbers of microscopic particles. It is N pﬁ N p?r p?
significant if we can study the AP problem in much simpler H= 2 om + E Ejrﬁ + M 1)
few-body systems. If we can do so, much more improved =1 =1
understanding could be contributed to this strange and sigwith p; (p;r) andp being the moments of thiéh (jth) particle
nificant nonequilibrium relaxation behavior. in the left (right) side and the piston, respectively. It is well
known that systentl) is nonintegrable, and not chaofiall
the Lyapunov exponents are zgrdVoreover, numerical
*Corresponding author. simulations have shown that this system is mixing and er-

IIl. MODEL AND NONEQUILIBRIUM RELAXATION
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FIG. 1. m=1, M=500,N=4, v,=0, xp:70.0,E|(O):3200, andg, =4000. These parameters are used in all the following figures except
Figs. 4 and 5x;(0) andv;(0) are randomly chosen under the above constrafa}sx,(t) plotted vst for short time scale(b) x,(t) vst for
long time scale(c) Pressure differenc&P(t)=P,(t) - P,(t) plotted against for short time scale(d) AP(t) vst for long time scale. Ir{b) and
(d), the variations are apparently random and no tendency toward “equilibrium” is observed.

godic in energy surface. Some parameterglptan be made 1
irrelevant through scaling. In the following we set Pr= gl[mvlf(A) -mu(B)]|,

m=1, L=100, Ep(o):o, E=E/(0) + E,(0) =7200, . .
where the summation includes all collisioks1,2,... be-

) tween the piston and the nearest Igéir P,) and right(for
P,) particles, occurring in the time interval aft; v%(A) and
whereE(0), E (0) [E;(0)] are the initial energy of the piston ,k(B) represent the velocities of the nearest particle just after
and the energy of all the particles in the Ipfight] side of  and before théth collision, respectivelyAt is chosen suffi-
the piston, respectively, arfflis the total energy of the sys- ciently small that the piston velocity keeps practically un-
tem. In Fig. 1 we simulate the canonical equations derive¢hanged, while sufficiently large that many collision events
from Eq. (1) with M=500>1 and a set of arbitrarily chosen happen duringAt. Throughout the paper, we takd=1 for
initial variables[under condition(2)]. In a short time scale numerical simulations. In Fig. (), one observes that the
[Fig. 1(a)], we observe oscillatory motion of the piston with piston can move towards the central equilibrium position
a characteristic frequency and slightly random fluctuations iryp:|_/2 in certain periods and can move also from the vicin-
amplitude and phase. In long time scpiég. 1(b)], the mo- ity of x,~L/2 to far away in other periods. In Fig(d), the
tion of the piston shows large fluctuation and strong randomiarge fluctuation ofAP indicates as well that the balance
ness. In Figs. (£) and Xd), and(d) we plot the variation of  petween the energies of both sides of the piston is not even-
the pressure differencAP=P,-P,, where P, and P, are  tyally approached. One can find neither any tendency from
pressures of the left and the right sides of the piston, respegonequilibrium towards equilibrium, nor any characteristic
tively. Numerically, the pressures are measured as phenomenon of AP systems.
In order to study the relaxations of few-body systems
1 K K from nonequilibrium states to equilibrium states, the first
Pi= At Z [mof(A) - mui(B)]], crucial problem to be solved is how to define few-body in a

061103-2



RELAXATION TO EQUILIBRIUM IN FEW-PARTICLE... PHYSICAL REVIEW E 71, 061103(2005

70-\ fﬂ\ {‘A\ r‘/‘\ r‘”\ /A\ /f‘\ /\‘\ f'ﬂ\ (r»\ /\\ f\\ / 70_
| | A | L
n ] }\/k\]\ /*r\/‘/\;\ /\H;}\f > ”N \M
<= \ \ ‘ \‘ “ | “ “ / | “‘ ! AQ_ 1 ( } ‘ mwwl YTV IVIVIRVINEYS
RV ;ﬂ o
\/‘f\/‘w\ \f‘\“/\/\/“w 55- V V
554 \/"‘ \‘ / \«/‘ l\/,/ \/" 1,‘f \\/ \\/ ‘U“‘ \‘\ f} \/ “\/
A W V v i Y A Y i W 4 5 0 I I I
0 200 400 0 500 1000 1500 2000 2500 3000
(a) t (b) t
] 150] 100
? 100] 0 “ HU ( \WJMW /w T —
<
50+ 200
A, 604 n/: 04 1000 2000
% J -50
554 -100]
50. -150]
0 300000 600000 900000 1200000 20T 300000 600000 900000 1200000
(© t (d) t
1000
50004 R IR -
, 4000+ \ ha 5001
% v
W™ 3000 o
2000 4 ol
0 400000 800000 1200000 0 400000 800000 1200000
(e) t M t

FIG. 2. Data obtained by averaging*ifiacroscopically identical systems with random initial microscopic variat(y v;(0). (a), (b),
(o) (xx(1)) plotted vst for different time scales. Periodic oscillati¢a), dissipation of coherencg), and relaxation to equilibriunc) are
observed in different time stages of the AP evolutitd). (AP(t)) vs t for small (large frame¢ and large(small frame time scales(e)

Evolutions of the average particle energigg(t)) and (E,(t)). (f) Evolution of the average piston energy. Equal-energy parti¢i
=(E)=N(E,) is eventually established.

nonequilibrium state. Actually, any few-body state is "non-global thermodynamic equilibrium are clearly seen. The
equilibrium.” Equilibrium states of few-body systems have characteristic phenomenon of AP systems is demonstrated in
been well defined by long time averages if these systemeur few-body system without any ambiguity.
enjoy ergodicity in energy surfac¢$5,16. However, up to In Fig. 2 the evolution of the ensemble of systems has
date, there has been no clear definition, to our knowledge, fdhree distinctive stages. First, for very small time sddle
nonequilibrium of few-body systems because any long time= (0,400, Figs. 2a)], we observe well behaved periodic
averages give always equilibrium states. For defining nonescillation. This coherent motion is caused by the coherence
equilibrium states one has to make ensemble aver@gt®r  stored in the initial condition of the slow variables. Second,
than time averagesin our case, we use some slow varying this coherent oscillation damps for short time scéte
quantities(g;, andv,, X,) for ensemble averages, which are ~(400,2500, Fig. 2b)] due to the dissipation caused
computed for identical initial slow variables and different mainly by the phase diffusion between different systétiis
randomly chosen other fast variablesich as the space po- conclusion can be drawn by comparing Figéa)2and 2b)
sitions and the velocities of all small-mass partitles with Fig. 1(@]. In the end of the second stagaboutt

In Figs. 2a)-2(d) we do exactly the same as in Fig. 1 with =~2500, the amplitude of the coherent oscillation damps to
the same initial conditiong, ,(t=0), v,(t=0), andx,(t=0).  nearly zero[Fig. 2(c)] and in the same time the two sides
However, unlike a single system with an arbitrarily chosencome to mechanical balan&= P, [AP~=0, Fig. 2d)]; this
set of the initial particle variables in Fig. 1, we average allis exactly what happens in conventional thermodynamic AP
slow quantities in Fig. 2 of 10 000 systems with identical systems. The most interesting feature is observed in the third
slow variables and different fast variables. Under these enstage when the few-body AP system goes from a mechani-
semble averages, the features of Fig. 2 turn to be dramateally balancedFig. 2(d)] while thermally and spatially non-
cally different from those of Fig. 1. Now nonequilibrium and equilibrium state to the globally equilibrium stajte,=L/2
equilibrium states can be defined properly, and relaxationsvith E;=E,]. In this stage, the piston monotonously moves to
from nonequilibrium to mechanical equilibrium and then toleft towardsx,=L/2 [Fig. 2(c)] and in the same time one
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FIG. 3. (8)-(d). Continuous lines: results of Figs(a?-2(d), respectively. Circles: the same as in Fig&)22(d), respectively, with data

obtained by averaging the results of Ef) with 1000 different noise realizations. Agreements between the theoretical predictions and the
direct numerical simulations of the ensemble of the original AP systems are satisfactory.

observes energy transport from the left side to the right side = =

[Fig. 2e)], and this is a typical AP feature against the intu- B =-Puvp E=Pup (3b)

ition. It is interesting to note that dt— oo the piston gains

energy predicted by the energy-equal partition |&t _ _

> ~ = i — 2E — 2E

>1)~E/(2N+1)=800[Fig. 2f)]. P = =) P = r (30
Xp L =Xy

Ill. STOCHASTICALLY FORCED PHENOMENOLOGICAL

EQUATIONS We compare the result of direct numerical simulation of

the ensemble of systenpBig. 2(a) or solid line in Fig. 3a)]

In Figs. 1 and 2 we demonstrate the dynamic behavior oWith the solution of Egs(3) [circles in Fig. 3a)] for the
a single few-body AP system and the averages of an erfame initial conditions ok,(0), v,(0), andE, ;(0). The the-
semble of such systems, respectively, by purely numericapretical predictions of3) agree with the numerical results of
simulations. Equatioril) is nonintegrable. For any compre- EQ. (1) perfectly, verifying the validity of the assumption of
hensive analytical understanding one has to seek some ajffie local equal-energy partition of E(Bc).
proximations based on certain assumptions. Here we adopt Although Eq.(3) can reproduce well the characteristics of
the so-called local equilibrium assumption. Simde>m, the  the evolution of the average of the ensemble of systems in
variations ofx,, v,, andE ; are much slower than thosexf ~ the very early(the firsy time stage, the purely periodic os-
andv;. Therefore, we assume that the left and right particlegillation of Fig. 3a) cannot explain the dissipative damping
have sufficiently long time to reach local equilibriums whenin the second stagéFigs. 2b) and Zd)] and the anti-
the piston variables have not been considerably changeéhtuition feature in the third stagdrigs. 2c) and 2d)]. The
With this assumption, the evolutions of the slow quantitiescrucial point ignored in Eqs(3) is that the pressureB,,

Xp, Up, @ndE;; can be explicitly given as should be subject to inevitable fluctuations. Since particle
velocities may quickly lose their memories after few particle-
1 P -P. 3 particle and particle-piston collisions, we can simply assume
Up— ( | r) (33 : . '
M these fluctuations as white noisg,(t)
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FIG. 4. The same as Fig. 3 witid=1000.

&:E"‘Fl,r(t) _MFUUP"-M'[;HUIZJ
M M should be added to the right-hand si@édn.s) of Egs. (3h)
and(3c). Moreover, ag— <, the system should go to equi-
(I, (1)=0, (4a)  librium satisfying the equal-energy partition. This requires
(vp=0, Ey;=0, 3M(up)=(E)/N=(E)N for t—c. These
Ty (DT (1)) = 2aD; St —t'), (T,HT.(t'))=0, conditions suggest one more additional termadvib, , in the
(1,01, t)) = 20Dy, St =), NOTE')) r.n.s. of Eqs(3b) and(30). Finally, Eqs.(3b) and(3¢) should

where we seD,=E;/x,, and D,=E,/(L-x,), by assuming be replaced by

proportional fluctuations of P,,. According to the _ oE E oANM2
fluctuation-dissipation theorem, these fluctuations should be E=- —'Up_ aM— — ML v+ ——— 'U;ZJ (5a)
associated with dissipative term@7v,, in Eq. (3a). In ad- Xp Xp 2Xp
dition, the dissipation coefficientg,, are not independent,
they are uniquely determined by the fluctuations, based on . 2E, E, aNM?
the Einstein formula of the fluctuation-dissipation theorem E;= + VL aM Lo MT', -vp + AL —x) Vb
[17], *p %p (L=xp)
(5b)
Pu _ ﬂ, KT, = @, Due to the conservation law of the total energy, the three
aD, KTy, ’ quantitiesE,, E,, and E, are not independent. We use Egs.
) (5@ and(5b) together with the constraint
leading to
E=E,+E+E (6)
_aNMDy,

= o (4b)  for numerical simulations. In Ed5) all terms are explicitly
L and quantitatively given except the parametenwhich we
) _ ) — are unable to derive analytically due to the complexity of the
Equations(4a) and (4b) modify Eq. (38 to vp=(1/M)(P  few.-body systems. Nevertheless, the whole complexity of
—-P)—(Bi+B;) v, +I'1+I,. Since for every action there is an the nonintegrable and mixing system is now enormously re-
equal and opposite reaction, additional fluctuation and dissiduced to a single constant, which can be easily determined
pation terms by numerical fitting.
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70 e lines and the dots are, however, observed clearly. The reason
| is that for largem, the system needs a longer relaxation time
65 : to reach local equal-energy partition, and the assumption of a

R local equal-energy partition is no longer valid in the piston
> 601 motion. We find that for largeN, the local equal-energy
partition and also the agreement between the numerical re-

554 it : o ; ;
Sl ! sults and theoretical prediction can be improved by increas-
50 ing the ratioM/m (i.e., by slowing down the motion of the
- - heavy pistopn However, for considerably largevi/m the
0 1000 2000 3000 ; .
(a) t relaxation becomes extremely slow, and the corresponding

numerical simulation turns to be extremely time consuming.
We will not go further in this direction.

The results of Fig. 5 can be used to explain why all pre-
vious numerical simulations of AP systems did not agree
guantitatively with theoretical predictioris.g., sed11,12).

All analytical computations of thermodynamic AP systems

performed so far have been based on local equilibrium as-

sumption (namely, local Boltzmann distribution of particle

velocities and local equal-energy partitionsor a thermo-

0 200000 400000 600000 gooooo  dynamic system with a huge number of particles this as-
t sumption can be approximately valid only if the ratio of the

FIG. 5. () and (b) The same as Figs.(8 and 3c) with N piston mass over the particle magldm is huge. However,

=10. While the qualitative results remain unchanged, obvious quanf-Or hugeM/m the rglaxatlon of the AP s.ysten."l 1S e>§tremely
titative deviations between the theoretical predictions of €. slow and is impractical for actual numerical simulations. For

(circles and direct numerical simulations of EG) (solid lineg are ~ 'ealistic numerical simulations one often uses parameders

observed for this largeX. ~10°-10° with M/m~10?-10% at which the deviation
from local equilibrium is large and thus the numerical results
obtained in these ranges of parameters are certainly not in

In Figs. 3a)-3(d) we do the same as in Figs(a-2(d),  agreement with the theoretical predictioid1,17). It is

respectively, by comparing the results of E§). (circles and  then remarkable that with few-particle AP systems, agree-

those of Eq(1) (continuous linek All circles plot the data of ment between direct numerical simulations and theoretical

averages of 1000 different realizations of noi$ggt). Itis  predictions of stochastic phenomenological equations can be

striking that both evolutions coincide with each other noteasily achieved, and the mechanism underlying the interest-

only qualitatively, but also quantitatively. By adjusting a ing characteristics of the AP systems can be demonstrated in

single parameterr only, we can use Eq(5) to reproduce a more apparent manner.

satisfactorily the entire evolution from strong nonequilibrium

state to partialmechanical equilibrium and finally to a glo-

bal equilibrium state. This agreement shows that the mecha- IV. CONCLUSION

nisms implied by the local equilibrium assumption Eg) In conclusion, we have suggested a nonintegrable and
and the fluctuations of Eq¢4) and (5) explore the essences miying few-particle model with a heavy piston, which shows

of the few-body AP problem, including the periodic coherent,-,4om motion for its long time evolution. With proper en-
oscillation in the first stage, dissipative amplitude damping insemple averages, we observe coherent oscillation with char-
the second stage, and the anti-intuition energy transport agyreristic frequency, regular dissipative damping of oscilla-
sociated to the relaxation to the global equilibrium in thej,, amplitude, directional relaxation from nonequilibrium to
third stage. A — < the equal-energy partition is asymptoti- eqyilibrium state, and the anti-intuition energy transport of
cally established by Eqs5), i.e., we observgE(t—=))  he adiabatic piston in this relaxation. All these interesting
=(E(t—))— 3200, andE(t—))— 800 eventually. It is  features are explained and reproduced by a noise-driven Eq.
emphasized that the inclusion of fluctuations is the key points) that is derived from the assumptions of local equilibrium
for the success of Eq5). thermodynamics and fluctuations in this thermodynamics. It
Equation (5) is valid approximately for arbitraryN(N s emphasized that all theoretical assumptions are based on
=1) and M(M>m); the validity is well confirmed by nu- some phenomenological considerations based on certain
merical simulations. In Fig. 4 we do exactly the same as imphysical reasoning. Numerical simulations approximately
Fig. 3 for M=1000; the results are the same as for Fig. 3verify the validity of the analysis.
except that the time scale of evolution is enlarged. In Figs. So far, the problem of relaxation of nonequilibrium sys-
5(a) and §b) we do the same as in Fig(l§ and 3c), re- tems has been defined and investigated uniquely for macro-
spectively, by takingN\=10 andM =500. Both the direct nu- scopic systems consisting of huge numbers of subsystems
merical simulationgsolid lineg and the stochastically phe- (say, particles Here, with a proper classification of slow and
nomenological equationgircles show behaviors similar to fast variables, we convincingly show relaxation from non-
those of Fig. 3. Quantitatively, deviations between the solicequilibrium to equilibrium with ensemble average of many

(b)
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