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A Hamiltonian system with few particles and a heavy adiabatic piston is studied. With ensemble averages
based on proper classification of slow and fast variables, a nonequilibrium state is defined and the relaxation
from nonequilibrium to equilibrium is investigated. Coherent oscillation, dissipative oscillation damping, and
anti-intuition energy transfer of the adiabatic piston are observed by numerical simulations. Noise-driven
thermodynamic equations of slow variables are derived, based on the assumption of local equilibrium and the
fluctuation-dissipation theorem, to understand and quantitatively reproduce all the above few-body nonequi-
librium relaxation features.
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I. INTRODUCTION

The problem of statistical behavior of few-body systems
has attracted great attention in recent decades. The crucial
significance of this topic is that the investigation can build up
a bridge from mechanics to statistical physicsf1–9g It turns
to be clear that a nonlinear mechanical system with few par-
ticles may show ergodicity in energy surface, and various
thermodynamic quantities can be defined accordingly, and
the thermodynamic second law can be applied to such a sys-
tem, looking very simple. In this direction, a problem ex-
tremely important in nonequilibrium statistical physics, the
relaxation process from nonequilibrium to equilibrium states,
has not beensto our knowledged considered and even the
definition of nonequilibrium states for few body mechanical
systems has not yet been available.

In statistical physics, there are a number of interesting
problems concerning nonequilibrium relaxation processes.
The evolution of systems with adiabatic pistonssAPd is
among the most conceptionally amazing onesf10–14g. The
AP problem considers the relaxation to the equilibrium state
with a piston having large mass and forbidding heat flow
between its two sides. In this process one may observe a
strange phenomenon: as the average piston position moves
from right sleftd to left srightd, one finds energy transport
from left srightd to right sleftd, and this is not intuitively
accepted. It has been made clear that this seemingly anti-
intuitive phenomenon is caused by the fluctuation of the pis-
ton motion f11g, which is often ignored in studying relax-
ation processes of thermodynamic systems. So far, the AP
problem has been investigated uniquely for thermodynamic
systems having huge numbers of microscopic particles. It is
significant if we can study the AP problem in much simpler
few-body systems. If we can do so, much more improved
understanding could be contributed to this strange and sig-
nificant nonequilibrium relaxation behavior.

From a mathematical point of view, most of few-body
mechanical systems are nonintegrable, they may be mixing,
chaotic or may be ergodic in energy surface. It is usually
impossible to analytically solve the trajectories of such sys-
tems. However, it is possible to solve some of these prob-
lems in statistical levelsoften with reasonable approxima-
tionsd. Analytical results in this direction for any new
nontrivial systems will be of much help in understanding
physical processes.

In this paper, we will study few-body AP systems, pro-
pose a suitable average method to manifest the relaxation
processes from nonequilibrium to equilibrium states, and
construct a stochastically forced thermodynamic equation to
satisfactorily describe the relaxation processes.

II. MODEL AND NONEQUILIBRIUM RELAXATION

Let us start with a few-body AP model, which is supposed
to have dynamic structure as simple as possible on one hand
and to contain the essential characteristics of the AP problem
on the other hand. We consider a piston of massM, which is
adiabatic against heat flow between its two sides. Each side
of the piston containsN particles of massm with m!M. The
particles and the piston move in one-dimensional space of
lengthL, and thus, no penetration through any particle, pis-
ton, and boundary is allowed. Free motions are assumed
without collision, and all the particle-particle, particle-piston,
and particle-boundary collisions are hard and elastic. There-
fore, the Hamiltonian of the system reads

H = o
i=1

N
pil

2

2m
+ o

j=1

N
pjr

2

2m
+

p2

2M
s1d

with pil spjrd andp being the moments of theith s j thd particle
in the left srightd side and the piston, respectively. It is well
known that systems1d is nonintegrable, and not chaoticsall
the Lyapunov exponents are zerod. Moreover, numerical
simulations have shown that this system is mixing and er-*Corresponding author.

PHYSICAL REVIEW E 71, 061103s2005d

1539-3755/2005/71s6d/061103s7d/$23.00 ©2005 The American Physical Society061103-1



godic in energy surface. Some parameters ofs1d can be made
irrelevant through scaling. In the following we set

m= 1, L = 100, Eps0d = 0, E = Els0d + Ers0d = 7200,

s2d

whereEps0d, Els0d fErs0dg are the initial energy of the piston
and the energy of all the particles in the leftfrightg side of
the piston, respectively, andE is the total energy of the sys-
tem. In Fig. 1 we simulate the canonical equations derived
from Eq. s1d with M =500@1 and a set of arbitrarily chosen
initial variablesfunder conditions2dg. In a short time scale
fFig. 1sadg, we observe oscillatory motion of the piston with
a characteristic frequency and slightly random fluctuations in
amplitude and phase. In long time scalefFig. 1sbdg, the mo-
tion of the piston shows large fluctuation and strong random-
ness. In Figs. 1scd and 1sdd, andsdd we plot the variation of
the pressure differenceDP=Pl −Pr, where Pl and Pr are
pressures of the left and the right sides of the piston, respec-
tively. Numerically, the pressures are measured as

Pl =
1

DtUok=1
fmvl

ksAd − mvl
ksBdgU ,

Pr =
1

DtUok=1
fmvr

ksAd − mvr
ksBdgU ,

where the summation includes all collisionsk=1,2, . . . be-
tween the piston and the nearest leftsfor Pld and rightsfor
Prd particles, occurring in the time interval ofDt; vksAd and
vksBd represent the velocities of the nearest particle just after
and before thekth collision, respectively.Dt is chosen suffi-
ciently small that the piston velocity keeps practically un-
changed, while sufficiently large that many collision events
happen duringDt. Throughout the paper, we takeDt=1 for
numerical simulations. In Fig. 1sbd, one observes that the
piston can move towards the central equilibrium position
xp=L /2 in certain periods and can move also from the vicin-
ity of xp<L /2 to far away in other periods. In Fig. 1sdd, the
large fluctuation ofDP indicates as well that the balance
between the energies of both sides of the piston is not even-
tually approached. One can find neither any tendency from
nonequilibrium towards equilibrium, nor any characteristic
phenomenon of AP systems.

In order to study the relaxations of few-body systems
from nonequilibrium states to equilibrium states, the first
crucial problem to be solved is how to define few-body in a

FIG. 1. m=1, M =500,N=4, vp=0, xp=70.0,Els0d=3200, andEr =4000. These parameters are used in all the following figures except
Figs. 4 and 5.xis0d andvis0d are randomly chosen under the above constraints.sad xpstd plotted vst for short time scale.sbd xpstd vs t for
long time scale.scd Pressure differenceDPstd=Plstd−Prstd plotted againstt for short time scale.sdd DPstd vs t for long time scale. Insbd and
sdd, the variations are apparently random and no tendency toward “equilibrium” is observed.
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nonequilibrium state. Actually, any few-body state is ”non-
equilibrium.” Equilibrium states of few-body systems have
been well defined by long time averages if these systems
enjoy ergodicity in energy surfacesf15,16g. However, up to
date, there has been no clear definition, to our knowledge, for
nonequilibrium of few-body systems because any long time
averages give always equilibrium states. For defining non-
equilibrium states one has to make ensemble averagessrather
than time averagesd. In our case, we use some slow varying
quantitiessEl,r andvp, xpd for ensemble averages, which are
computed for identical initial slow variables and different
randomly chosen other fast variablesssuch as the space po-
sitions and the velocities of all small-mass particlesd.

In Figs. 2sad–2sdd we do exactly the same as in Fig. 1 with
the same initial conditionsEl,rst=0d, vpst=0d, andxpst=0d.
However, unlike a single system with an arbitrarily chosen
set of the initial particle variables in Fig. 1, we average all
slow quantities in Fig. 2 of 10 000 systems with identical
slow variables and different fast variables. Under these en-
semble averages, the features of Fig. 2 turn to be dramati-
cally different from those of Fig. 1. Now nonequilibrium and
equilibrium states can be defined properly, and relaxations
from nonequilibrium to mechanical equilibrium and then to

global thermodynamic equilibrium are clearly seen. The
characteristic phenomenon of AP systems is demonstrated in
our few-body system without any ambiguity.

In Fig. 2 the evolution of the ensemble of systems has
three distinctive stages. First, for very small time scaleft
<s0,400d, Figs. 2sadg, we observe well behaved periodic
oscillation. This coherent motion is caused by the coherence
stored in the initial condition of the slow variables. Second,
this coherent oscillation damps for short time scaleft
<s400,2500d, Fig. 2sbdg due to the dissipation caused
mainly by the phase diffusion between different systemsfthis
conclusion can be drawn by comparing Figs. 2sad and 2sbd
with Fig. 1sadg. In the end of the second stagesabout t
<2500d, the amplitude of the coherent oscillation damps to
nearly zerofFig. 2scdg and in the same time the two sides
come to mechanical balancePl < Pr fDP<0, Fig. 2sddg; this
is exactly what happens in conventional thermodynamic AP
systems. The most interesting feature is observed in the third
stage when the few-body AP system goes from a mechani-
cally balancedfFig. 2sddg while thermally and spatially non-
equilibrium state to the globally equilibrium statefxp=L /2
with El =Erg. In this stage, the piston monotonously moves to
left towardsxp=L /2 fFig. 2scdg and in the same time one

FIG. 2. Data obtained by averaging 104 macroscopically identical systems with random initial microscopic variablesxis0d, vis0d. sad, sbd,
scd kxpstdl plotted vst for different time scales. Periodic oscillationsad, dissipation of coherencesbd, and relaxation to equilibriumscd are
observed in different time stages of the AP evolution.sdd kDPstdl vs t for small slarge framed and largessmall framed time scales.sed
Evolutions of the average particle energieskElstdl and kErstdl. sfd Evolution of the average piston energy. Equal-energy partitionkEll
=kErl=NkEpl is eventually established.
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observes energy transport from the left side to the right side
fFig. 2sedg, and this is a typical AP feature against the intu-
ition. It is interesting to note that att→` the piston gains
energy predicted by the energy-equal partition lawEpst
@1d<E/ s2N+1d=800 fFig. 2sfdg.

III. STOCHASTICALLY FORCED PHENOMENOLOGICAL
EQUATIONS

In Figs. 1 and 2 we demonstrate the dynamic behavior of
a single few-body AP system and the averages of an en-
semble of such systems, respectively, by purely numerical
simulations. Equations1d is nonintegrable. For any compre-
hensive analytical understanding one has to seek some ap-
proximations based on certain assumptions. Here we adopt
the so-called local equilibrium assumption. SinceM @m, the
variations ofxp, vp, andEl,r are much slower than those ofxi
andvi. Therefore, we assume that the left and right particles
have sufficiently long time to reach local equilibriums when
the piston variables have not been considerably changed.
With this assumption, the evolutions of the slow quantities
xp, vp, andEl,r can be explicitly given as

v̇p =
1

M
sP̄l − P̄rd s3ad

Ē
˙

l = − P̄lvp, Ē
˙

r = P̄rvp s3bd

P̄l =
2Ēl

xp
, P̄r =

2Ēr

L − xp
s3cd

We compare the result of direct numerical simulation of
the ensemble of systemsfFig. 2sad or solid line in Fig. 3sadg
with the solution of Eqs.s3d fcircles in Fig. 3sadg for the
same initial conditions ofxps0d, vps0d, andEl,rs0d. The the-
oretical predictions ofs3d agree with the numerical results of
Eq. s1d perfectly, verifying the validity of the assumption of
the local equal-energy partition of Eq.s3cd.

Although Eq.s3d can reproduce well the characteristics of
the evolution of the average of the ensemble of systems in
the very earlysthe firstd time stage, the purely periodic os-
cillation of Fig. 3sad cannot explain the dissipative damping
in the second stagefFigs. 2sbd and 2sddg and the anti-
intuition feature in the third stagefFigs. 2scd and 2sddg. The
crucial point ignored in Eqs.s3d is that the pressuresPl,r
should be subject to inevitable fluctuations. Since particle
velocities may quickly lose their memories after few particle-
particle and particle-piston collisions, we can simply assume
these fluctuations as white noiseGl,rstd

FIG. 3. sad-sdd. Continuous lines: results of Figs. 2sad–2sdd, respectively. Circles: the same as in Figs. 2sad–2sdd, respectively, with data
obtained by averaging the results of Eq.s5d with 1000 different noise realizations. Agreements between the theoretical predictions and the
direct numerical simulations of the ensemble of the original AP systems are satisfactory.
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Pl,r

M
=

Pl,r

M
+ Gl,rstd

kGl,rstdl = 0, s4ad

kGl,rstdGl,rst8dl = 2aDl,rdst − t8d, kGlstdGrst8dl = 0,

where we setDl =El /xp, and Dr =Er / sL−xpd, by assuming
proportional fluctuations of Pl,r. According to the
fluctuation-dissipation theorem, these fluctuations should be
associated with dissipative terms −bl,rvp in Eq. s3ad. In ad-
dition, the dissipation coefficientsbl,r are not independent,
they are uniquely determined by the fluctuations, based on
the Einstein formula of the fluctuation-dissipation theorem
f17g,

bl,r

aDl,r
=

M

kTl,r
, kTl,r =

2El,r

N
,

leading to

bl,r =
aNMDl,r

2El,r
. s4bd

Equationss4ad and s4bd modify Eq. s3ad to v̇p=s1/MdsP̄l

− P̄rd−sbl +brd ·vp+Gl +Gr. Since for every action there is an
equal and opposite reaction, additional fluctuation and dissi-
pation terms

− MGl,rvp + Mbl,rvp
2

should be added to the right-hand sidesr.h.s.d of Eqs. s3bd
and s3cd. Moreover, ast→`, the system should go to equi-
librium satisfying the equal-energy partition. This requires

kvpl=0, Ėl,r =0, 1
2Mkvp

2l=kEll /N=kErlN for t→`. These
conditions suggest one more additional terms −aMDl,r in the
r.h.s. of Eqs.s3bd ands3cd. Finally, Eqs.s3bd ands3cd should
be replaced by

Ėl = −
2El

xp
vp − aM

El

xp
− MGl ·vp +

aNM2

2xp
·vp

2 s5ad

Ėr = +
2Er

L − xp
·vp − aM

Er

L − xp
− MGr ·vp +

aNM2

2sL − xpd
·vp

2

s5bd

Due to the conservation law of the total energy, the three
quantitiesEl, Er, and Ep are not independent. We use Eqs.
s5ad and s5bd together with the constraint

E = Ep + El + Er s6d

for numerical simulations. In Eq.s5d all terms are explicitly
and quantitatively given except the parametera, which we
are unable to derive analytically due to the complexity of the
few-body systems. Nevertheless, the whole complexity of
the nonintegrable and mixing system is now enormously re-
duced to a single constant, which can be easily determined
by numerical fitting.

FIG. 4. The same as Fig. 3 withM =1000.
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In Figs. 3sad–3sdd we do the same as in Figs. 2sad–2sdd,
respectively, by comparing the results of Eq.s5d scirclesd and
those of Eq.s1d scontinuous linesd. All circles plot the data of
averages of 1000 different realizations of noisesGl,rstd. It is
striking that both evolutions coincide with each other not
only qualitatively, but also quantitatively. By adjusting a
single parametera only, we can use Eq.s5d to reproduce
satisfactorily the entire evolution from strong nonequilibrium
state to partialsmechanicald equilibrium and finally to a glo-
bal equilibrium state. This agreement shows that the mecha-
nisms implied by the local equilibrium assumption Eq.s3d
and the fluctuations of Eqs.s4d and s5d explore the essences
of the few-body AP problem, including the periodic coherent
oscillation in the first stage, dissipative amplitude damping in
the second stage, and the anti-intuition energy transport as-
sociated to the relaxation to the global equilibrium in the
third stage. Ast→` the equal-energy partition is asymptoti-
cally established by Eqs.s5d, i.e., we observekElst→`dl
=kErst→`dl→3200, andkEpst→`dl→800 eventually. It is
emphasized that the inclusion of fluctuations is the key point
for the success of Eq.s5d.

Equation s5d is valid approximately for arbitraryNsN
ù1d and MsM @md; the validity is well confirmed by nu-
merical simulations. In Fig. 4 we do exactly the same as in
Fig. 3 for M =1000; the results are the same as for Fig. 3
except that the time scale of evolution is enlarged. In Figs.
5sad and 5sbd we do the same as in Fig. 3sbd and 3scd, re-
spectively, by takingN=10 andM =500. Both the direct nu-
merical simulationsssolid linesd and the stochastically phe-
nomenological equationsscirclesd show behaviors similar to
those of Fig. 3. Quantitatively, deviations between the solid

lines and the dots are, however, observed clearly. The reason
is that for largerN, the system needs a longer relaxation time
to reach local equal-energy partition, and the assumption of a
local equal-energy partition is no longer valid in the piston
motion. We find that for largerN, the local equal-energy
partition and also the agreement between the numerical re-
sults and theoretical prediction can be improved by increas-
ing the ratioM /m si.e., by slowing down the motion of the
heavy pistond. However, for considerably largerM /m the
relaxation becomes extremely slow, and the corresponding
numerical simulation turns to be extremely time consuming.
We will not go further in this direction.

The results of Fig. 5 can be used to explain why all pre-
vious numerical simulations of AP systems did not agree
quantitatively with theoretical predictionsse.g., seef11,12gd.
All analytical computations of thermodynamic AP systems
performed so far have been based on local equilibrium as-
sumption snamely, local Boltzmann distribution of particle
velocities and local equal-energy partitionsd. For a thermo-
dynamic system with a huge number of particles this as-
sumption can be approximately valid only if the ratio of the
piston mass over the particle massM /m is huge. However,
for hugeM /m the relaxation of the AP system is extremely
slow and is impractical for actual numerical simulations. For
realistic numerical simulations one often uses parametersN
<102−103 with M /m<102−103, at which the deviation
from local equilibrium is large and thus the numerical results
obtained in these ranges of parameters are certainly not in
agreement with the theoretical predictionssf11,12gd. It is
then remarkable that with few-particle AP systems, agree-
ment between direct numerical simulations and theoretical
predictions of stochastic phenomenological equations can be
easily achieved, and the mechanism underlying the interest-
ing characteristics of the AP systems can be demonstrated in
a more apparent manner.

IV. CONCLUSION

In conclusion, we have suggested a nonintegrable and
mixing few-particle model with a heavy piston, which shows
random motion for its long time evolution. With proper en-
semble averages, we observe coherent oscillation with char-
acteristic frequency, regular dissipative damping of oscilla-
tion amplitude, directional relaxation from nonequilibrium to
equilibrium state, and the anti-intuition energy transport of
the adiabatic piston in this relaxation. All these interesting
features are explained and reproduced by a noise-driven Eq.
s5d that is derived from the assumptions of local equilibrium
thermodynamics and fluctuations in this thermodynamics. It
is emphasized that all theoretical assumptions are based on
some phenomenological considerations based on certain
physical reasoning. Numerical simulations approximately
verify the validity of the analysis.

So far, the problem of relaxation of nonequilibrium sys-
tems has been defined and investigated uniquely for macro-
scopic systems consisting of huge numbers of subsystems
ssay, particlesd. Here, with a proper classification of slow and
fast variables, we convincingly show relaxation from non-
equilibrium to equilibrium with ensemble average of many

FIG. 5. sad and sbd The same as Figs. 3sbd and 3scd with N
=10. While the qualitative results remain unchanged, obvious quan-
titative deviations between the theoretical predictions of Eq.s5d
scirclesd and direct numerical simulations of Eq.s1d ssolid linesd are
observed for this largerN.
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few-particle systems having identical initial slow variables.
We hope the results and the approaches in this paper may
stimulate new investigations of nonequilibrium states of few-
body nonintegrable and chaotic systems, and also novel stud-
ies of few-body adiabatic piston problems.
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